题目描述: | 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 nnn 张地毯,编号从 111 到nnn。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。 地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。 |
输入: | 输入共n+2n+2n+2行 第一行,一个整数nnn,表示总共有nnn张地毯 接下来的nnn行中,第 i+1i+1i+1行表示编号iii的地毯的信息,包含四个正整数a,b,g,ka ,b ,g ,ka,b,g,k ,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标(a,b)(a,b)(a,b)以及地毯在xxx轴和yyy轴方向的长度 第n+2n+2n+2行包含两个正整数xxx和yyy,表示所求的地面的点的坐标(x,y)(x,y)(x,y) |
输出: | 输出共111行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出−1-1−1 |
样例输入: | 3 1 0 2 3 0 2 3 3 2 1 3 3 2 2 |
样例输出: | 3 |
提示: | 【样例解释1】 如下图,111 号地毯用实线表示,222 号地毯用虚线表示,333 号用双实线表示,覆盖点(2,2)(2,2)(2,2)的最上面一张地毯是 333 号地毯。
【数据范围】
对于30% 的数据,有 n≤2n ≤2n≤2 ; noip2011提高组day1第1题
|
来源: | noip |
解答: | noip |